

SURVEY

Transverse electric fields effects in DECam devices: tree rings and glowing edges

Andrés Alejandro Plazas Malagón

Department of Physics

Cosmology and Astrophysics Group

In collaboration with **Gary M. Bernstein** (University of Pennsylvania) and **Erin S. Sheldon** (Brookhaven National Laboratory)

Precision astronomy with fully-depleted CCDs Workshop, Brookhaven National Laboratory, November 18th-19th, 2013

Outline

DARK ENERGY

- * Structures in dome flats:
 - -Tape bumps
 - -Glowing edges
 - -Tree rings
- * Redistribution of charge due to transverse/lateral electric fields: pixel area variations.
- * Impact on astrometric and photometric residuals.
- * Photometric and astrometric templates from dome flats, to improve astrometric and photometric solutions.
- * Conclusion and summary.

Structures in flats

DARK ENERGY SURVEY

Glowing Edges and Tape Bumps

DARK ENERGY SURVEY

Tape bumps: small gap between CCD and aluminum nitride (AIN) is filled with double-sided tape. Physical deformation that bends electric fields.

Will be masked in DES data.

Glowing edges: electric fields are wider than active pixels at the edges of the CCDs, stretching the effective area of the pixels.

Credit: Holland et al., 2009

Tree rings

DARK ENERGY SURVEY

High-resistivity CCDs are fabricated by using the floating zone (FZ) method. In the process, circularly symmetric gradient of resistance (doping) distribution are left behind.

Photoscan of a wafer surface

From Altmannshofer et al. 2003

Pixel area variations

DARK ENERGY SURVEY

* Transverse fields superpose with existing **E** fields in CCD resulting in distorted electric field lines.

* Redistribution of charge **→astrometry**

* Effective area of pixel changes photometry

* Flat fields give a map of variations in pixel uniformity (PRNU), with contributions from changes in sensitivity(QE) and pixel area.

Impacts on astrometry and photometry

DARK ENERGY SURVEY

* Astrometric solution: map from pixel to sky coordinates.

Used when stacking images to detect objects (DES requirement: match of < 15 mas between different exposures)

* Photometric solution: solution for star flat and zeropoint calibrations for individual exposures simultaneously.

DES requires 2% photometry.

See Gary Bernstein's talk in this workshop for more details about these functions and star flats for DECam data.

Impacts on photometry

DARK ENERGY SURVEY

Glowing edge

Bottom edge. Pixel Scale: 8 Filter: g. All CCDs, all months

Tree rings:

Impacts on astrometry

DARK ENERGY SURVEY

Templates from flats

DARK ENERGY SURVEY

* Use dome flats to measure the relative amplitude of the tree rings and glowing edges as a function of CCD position. Incorporate templates in astrometric and photometric solutions.

CCD: N22 (53)

ratio	A amplifier	B amplifier	
r-band/g-band	0.991 ± 0.00229	0.983 ± 0.00633	
i-band/g-band	0.9512 ± 0.00248	0.9435 ± 0.00639	
z-band/g-band	0.5793 ± 0.00627	0.5757 ± 0.00605	
Y-band/g-band	0.4260 ± 0.00719	0.4279 ± 0.00751	

- * Amplitude is larger for shorter wavelengths.
- * On average, photons with short wavelength are absorbed closer to the back window.

Wavelength dependence: a model

DARK ENERGY SURVEY

Can we calculate the expected relative amplitude of the tree rings and glowing edges as a function of wavelength?

ratio	A amplifier	B amplifier
r-band/g-band	0.991 ± 0.00229	0.983 ± 0.00633
i-band/g-band	0.9512 ± 0.00248	0.9435 ± 0.00639
z-band/g-band	0.5793 ± 0.00627	0.5757 ± 0.00605
Y-band/g-band	0.4260 ± 0.00719	0.4279 ± 0.00751

$$I_{\rm F} = \frac{\int_{\lambda_{\rm min}}^{\lambda_{\rm max}} d\lambda \int_0^d dy \ \lambda F(\lambda) S_{\lambda}(\lambda) f(y,\lambda) \ \partial_y \Delta X_{\perp}(y)}{\int_{\lambda_{\rm min}}^{\lambda_{\rm max}} d\lambda \int_0^d dy \ \lambda F(\lambda) S_{\lambda}(\lambda) f(y,\lambda)}$$

- We need:

- * SED of source: LEDs that illuminated dome flats
- * Transmission response of instrument per broad band
- * PDF of a photon being absorbed in [y, y+dy] interval: depends on silicon absorption coefficient
- * Lateral displacement of charge packet: depends on transverse and parallel fields

$$\Delta X_{\perp} = \int_0^y dy' rac{E_{\perp}(y')}{E_{||}(y')}$$

$$E_{\parallel}(y) \propto y/d$$

$$E_{\perp}(y) \propto y(1-y/d)$$

SURVEY

Tree rings: radial profiles

DARK ENERGY		

- * Assuming that rings are concentric, identify their center in a given CCD dome flat.
- * Bin the counts radially, as a function distance with respect to distance from the center. This gives us the radial profile of the tree rings (a function w(r)).

Tree rings: astrometric templates

DARK ENERGY SURVEY

0.25

0.20

0.15

- * A photon that hits the CCD at a position \mathbf{r} is seen as a position $\mathbf{r'} = \mathbf{r} + \mathbf{f(r)}$. $\mathbf{f(r)}$ is the astrometric distortion.
- * From the dome flats, we can measure w(r) and predict the distortion in astrometry

cubic spline knots

(the **f(r)** perturbation).

Residuals model predicted from flat (left channel)

- * If the illumination surface brightness is nearly constant, then the number of photons per pixel (w(r)) in a flat is proportional to the solid angle of the sky that the pixel sees.
- * The solid angle subtended by a pixel on the sky is related to the Jacobian of the astrometric distortion map: 1+ w(r) = |det J|

Rings:
$$f(r) = -\frac{1}{r} \int rw(r)dr$$

Edges:

$$f(x) = -\int w(x)dx$$

Tree rings: relation to BROOKHAVEN NATIONAL LABORATORY astrometry

SURVEY

* From the star flats, we can measure the astrometric signature:

Tree rings: relation to astrometry

DARK ENERGY SURVEY

...and then we can compare the prediction to the measurements:

Summary and conclusions

- * Spurious transverse electric fields in CCD redistribute charge between neighboring pixels, modifying the effective pixel area.
- * Structures are visible in dome flats: tape bumps, tree rings, glowing edges. They are not due to QE variations.
- * Photometric and astrometric measurements are impacted by these structures.
- * Templates of the amplitude of this effect as a function of position can be constructed from dome flats to improve on the calculation of the astrometric and photometric solutions.

Thanks!

-Thanks to:

Ivan Kotov Steve Holland DES WL working group Morgan May

Tom Dielh

Darren DePoy

Ting Li

Andrei Nomerotski W. Wester

DARK ENERGY SURVEY

Extra Slides

DARK ENERGY SURVEY

$$\frac{dF}{dy} = f(y) = \frac{\alpha \exp(-y\alpha)}{1 - \exp(-2d\alpha)}$$